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In an approach alternative to that of Mayer, a Hermitian operator is defined within
the LCAO MO framework, which allows to obtain molecular charges and bond orders
as expectation values of the first and second-order densities respectively. Such expec-
tation values result to be nothing else than Mulliken’s atom and bond populations.
Thus, Mulliken populations appear to be non arbitrary condensed electron density par-
titions, obtained according to quantum mechanical usual procedures for molecular one
and two electron observables. The theoretical simplicity of the outlined procedure can
be easily extended in order to obtain the expectation values for higher-order electronic
chemical bonds.

KEY WORDS: Density analysis, Mulliken populations, atomic charges, bond orders,
second order density, projection operators, expectation values

1. Introduction

In a previous work [1] using an approach alternative to that of Mayer, it
has been demonstrated that Mulliken atomic populations [2–5] can be deduced
not as the result of an arbitrary partition of the first-order density function, but
as expectation values of a Hermitian projection operator over the basis set func-
tions, possessing in this way the required structure to be considered, even if not
as observables, quantum mechanical well defined quantities.

However, this initial finding even if it connects chemical intuitive though
with theoretical proceedings, as a result divides the whole density function into
atomic density parts, it does not provide information at all about the chemical
bond idea, which apparently still has not been explicitly linked up to date with
the quantum mechanical logical structure.
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The aim of the present study is the description of a similar development,
as the one used in quantum chemical charge definition, but leading to the cal-
culation of chemical bond information by the way of the quantum mechanical
expectation value concept of an Hermitian operator.

For this purpose, first a résumé of the technique previously developed will
be given, an extension to the concept of charge definition will be given after-
wards and in second term the analysis of second-order density function will pro-
vide the adequate and equivalent tools to describe bond orders as a consequence
of non-classical exchange density projection and expectation value construction.

2. Molecular atomic charges as monoelectronic operator expectation values

Suppose known the first-order density function for a given molecular struc-
ture within the LCAO MO formalism [6]. The monoelectronic density function
can be written as

ρ(r) =
∑

i

ωi |i〉〈i|, (1)

where {ωi} are the MO occupation numbers, and the MO set is expressed as:
{|i〉}. Choosing a basis set of monoelectronic functions: B = {|µ〉}, every MO
can be described as a linear combination:

|i〉 =
∑

µ

cµi |µ〉, (2)

where |ci〉 = {cµi} are the variationally computed linear MO coefficients, which
can be arranged in turn as a set of column vectors: {|ci〉}. In doing so, whenever
the basis set B is ordered in a row vector: 〈M| = (. . . |µ〉; . . .), then the i-th MO
can be also written as the linear functional product:

|i〉 = 〈M|ci〉.
At the same time, the first-order density function, using definition (2) into equa-
tion (1), can be rewritten as

ρ(r) =
∑

µ

∑
ν

Pµν |µ〉〈ν| (3)

with the symmetric matrix P = {Pµν} being the so called charge and bond-order
matrix, constructed as it is well known with the MO coefficients, supposedly
defined into the real field, as

P =
∑

i

ωi |ci〉〈ci | → Pµν =
∑

i

ωicµicνi . (4)
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Knowing this, then there is possible to define the metric or overlap matrix of the
basis set B, by means of the scalar products of its elements:

S = {Sµν = 〈µ|ν〉},

which is a positive definite, non-singular, matrix, whose inverse will be noted as

S−1 = {
S(−1)

µν

}
.

2.1. Projectors over basis functions and atomic populations

With the inverse overlap elements it is possible to construct a projector
operator over any function of the basis set B. Choosing the function: |α〉 ∈ B,
for instance, then the projector has the form:

�α = ∑
β

S
(−1)
αβ |α〉 〈β| → ∀ |µ〉 ∈ B : �α |µ〉

= ∑
β

S
(−1)
αβ |α〉 〈β|µ〉 =

(∑
β

S
(−1)
αβ Sβµ

)
|α〉 = δαµ |α〉

(5)

and with such a projector, a new projector operator acting over the density func-
tion can be constructed as a tensor product:

�
(2)
αβ = �α ⊗ �β → �

(2)
αβ [ρ] = �α [ρ] �β

=
∑

µ

∑
ν

Pµν�α [|µ〉 〈ν|] �β =
∑

µ

∑
ν

Pµν [�α |µ〉] [〈ν| �β

]
=
∑

µ

∑
ν

Pµν

[
δαµ |α〉] [〈β| δνβ

] = Pαβ |α〉 〈β| (6)

and from this it is easy to construct an Hermitian operator attached to a center
A, such that:

�A =
∑
α∈A

∑
β

�
(2)
αβ → �A [ρ] = ρA =

∑
α∈A

∑
β

Pαβ |α〉 〈β|. (7)

The sum over all the molecular centers of the operators above described produce
the unit operator as

∑
A

�A[ρ] =
∑
A

ρA =
∑
A

∑
α∈A

∑
β

Pαβ |α〉〈β| = ρ →
∑
A

�A = I.
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Then, the expectation values of the operator set {�A} are just the Mulliken
atomic populations, because:

〈�A [ρ]〉 = 〈ρA〉 =
∑
α∈A

∑
β

Pαβ 〈αβ〉 =
∑
α∈A

∑
β

PαβSαβ = NA (8)

and the sum over all the centers produces:

∑
A

NA =
∑
A

〈ρA〉 =
∑
A

〈�A [ρ]〉 =
〈∑

A

�A [ρ]

〉
= 〈ρ〉 = NM,

where NM is the total number of electrons in the molecule.
In this manner, the Mulliken atomic population set: {NA} can be seen as an

expectation value collection of the operator set {�A} over the first-order molec-
ular density function ρ (r). Therefore, Mulliken populations can be considered
well defined as conforming to the quantum mechanical requirements of being
expectation values of a well-defined Hermitian operator.

2.2. Atomic charges as expectation values

From the atomic population set definition provided in equation (8), the
atomic charges can be easily constructed as observables too. If the total first-
order electronic and nuclear density functionP (r), including point-like nuclear
charges {ZA}, is made in the following way:

P (r) = −ρ (r) +
∑
A

ZAδ (r − rA) , (9)

where {rA} are the nuclear positions and δ (r − rA) Dirac’s delta functions, then
one can take into account a provisional form of an Hermitian operator:

ϒA = �A + 
A, (10)

where the first term is already defined in equation (7) and acts over the electronic
density, and the second term over the nuclear charge density. The action of the
operator (10) over the total density (9) can be naturally defined in the form of
a Hadamard product [7], such as

〈ϒA ∗ [P (r)]〉 = [�A + 
A] ∗
[
−ρ (r) +

∑
A

ZAδ (r − rA)

]
= − 〈�A [ρ (r)]〉 + ZA 〈
A [δ (r − rA)]〉 = −NA + ZA = QA,

and there is no need in principle to specify the nature of 
A, the nuclear part
of the operator (10), but solely to admit the additional property for the whole
atomic nuclear charge operator set {θA} holds:

〈
A [δ (r − rA)]〉 = 1.
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However, precisely Dirac’s functions have the same property:

∀A : 〈δ (r − rA)〉 = 1,

then it is obvious that one should consider:

∀A : 
A ≡ I,

consequently, the Hermitian atomic charge operator (10) can be defined as

∀A : ϒA = �A + I.

3. Molecular bond orders as two electron expectation values of an Hermitian
operator

In the previous work on this subject the atomic populations had been dis-
cussed in the way as resumed in the previous paragraph, but it is important to
find out if the so called Mulliken bond orders can be obtained in the same way.

3.1. Preliminary considerations

The previous results seem to indicate that nothing more can be extracted
from the first order density function. However, second-order density, even if
approximately defined, can be used to test whenever an operator can be con-
structed in the same way as it has been previously explained in order to describe
atomic populations as expectation values.

Using the previous notation, a second-order density can be written by
means of the expression:

ρ (r1; r2) =
∑

µ

∑
ν

∑
λ

∑
σ

PµνPλσ

(|µ〉 〈ν| ⊗ |λ〉 〈σ | − 1
2 |µ〉 〈σ | ⊗ |ν〉 〈λ|) , (11)

where in every tensor product symbol: ⊗, the first projector refers to the coordi-
nates of the first electron and the right hand one is associated to the coordinates
of the second electron. For example, when considering the first term of equation
(11), which corresponds to the Coulomb contribution, it can be written

|µ〉 〈ν| ⊗ |λ〉 〈σ | ≡ [|µ〉 〈ν| (r1)] [|λ〉 〈σ | (r2)]

and the same for the exchange contribution appearing in the second term of
equation (11) with a negative coefficient.
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3.2. Two-electron projectors and bond order operators

It is easy to form the two electron projection operator, equivalent to the
one used into first order density functions and described in equation (6). Such
a composite operator can be constructed as

�
(4)
αβγ δ = �

(2)
αβ (r1) ⊗ �

(2)
γ δ (r2) ,

which can act over the second-order density (11) in the following manner

�
(4)
αβγ δ

[
ρ(2)

] = �
(2)
αβ (r1)

[
ρ(2) (r1; r2)

]
�

(2)
γ δ (r2)

=
∑

µ

∑
ν

∑
λ

∑
σ

PµνPλσ

×
([

�
(2)
αβ |µ〉 〈ν|

] [
|λ〉 〈σ | �(2)

γ δ

]
− 1

2

[
�

(2)
αδ |µ〉 〈σ |

] [
|ν〉 〈λ| �(2)

βγ

])

in such a way that the associated bond order operator may be formally written
as

�AB (r1; r2) =
∑
α∈A

∑
γ

∑
β∈B

∑
δ

�
(4)
αγβδ.

Such an operator will produce a partition of the second-order density function
(11) into the second order diatomic terms

�AB

[
ρ(2)

] = ρ
(2)
AB =

∑
α∈A

∑
γ

∑
β∈B

∑
δ

Pαγ Pβδ

× (|α〉 〈γ | ⊗ |β〉 〈δ| − 1
2 |α〉 〈δ| ⊗ |β〉 〈γ |) , (12)

which will generate, upon a two-electron expectation value calculation, the fol-
lowing condensed density result:

NAB = 〈
�AB

[
ρ(2)

]〉 = 〈
ρ

(2)
AB

〉
=
∑
α∈A

∑
γ

∑
β∈B

∑
δ

Pαγ Pβδ

(
Sαγ Sβδ − 1

2SαδSβγ

)
=
∑
α∈A

∑
γ

Pαγ Sαγ

∑
β∈B

∑
δ

PβδSβδ

−1
2

∑
α∈A

∑
γ

∑
β∈B

∑
δ

Pαγ PβδSαδSβγ

= NANB − 1
2

∑
α∈A

∑
γ

∑
β∈B

∑
δ

Pαγ PβδSαδSβγ

= NANB − 1
2

∑
α∈A

∑
β∈B

[PS]αβ [PS]βα. (13)
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In the expression of the expectation value forming the condensed diatomic den-
sity terms, it can be perfectly seen the importance of the exchange contribution
leading to the second order Mulliken populations or two center bond orders.

In fact, this last result proves that the adequate bond order definition shall
be found in the exchange terms, because Coulomb contribution appears to be
just a product of the atomic population pair, associated to the involved atoms.

Consequently, it seems that bond orders can be related to the expectation
value of the exchange part of the second-order density function attached to a
composite Hermitian projection operator. Thus, this seems to indicate that chem-
ical bonding can be measured in this way as a non-classical, quantum mechan-
ical expectation value effect over the exchange part of the second order density
function. This is consistent with the subtleties of the elusive nature of chemical
bonds.

3.3. Overall sum or Minkowski norm of two-electron density function

The sums over the two center expectation values provided by the second-
order condensed densities furnish the result:

〈
ρ(2)

〉 = ∑
A

∑
B

NAB = N2
M − 1

2

∑
A

∑
α∈A

∑
B

∑
β∈B

[∑
γ

(
Pαγ Sγβ

)∑
δ

(
PβδSδα

)]

= N2
M − 1

2

∑
A

∑
α∈A

∑
B

∑
β∈B

[PS]αβ [PS]βα

= N2
M − 1

2
T r
[
(PS)2

]
(14)

furthermore, it can be written:

1
2
T r
[
(PS)2

]
= 1

2
T r [PSPS] = T r [PS] = NM,

because the following property is fulfilled

PSP = 4
∑

i

∑
j

|ci〉 〈ci | S
∣∣cj

〉 〈
cj

∣∣ =
∑
∑
j

|ci〉

〈
cj

∣∣ δij = 4
∑

i

|ci〉 〈ci | = 2P.

The result appearing in equation (14), for the Minkowski norm of the second-
order density function looks almost as a variance changed of sign. As using the
Minkowski norm of the first-order density function:

〈ρ〉 = NM
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and also taking into account that one can easily compute the Minkowski norm
of the square of the first-order density function, which could be written as

〈
ρ2〉 =

〈∣∣∣∑
µ

∑
ν

Pµν |µ〉 〈ν|
∣∣∣2
〉

=
∑

µ

∑
ν

∑
λ

∑
σ

PµνPλσSµσSνλ

=
∑

µ

∑
λ

[PS]µλ [PS]λµ = T r
[
(PS)2] = 2NM

then:

〈
ρ(2)

〉 = N2
M − NM = 〈ρ〉2 − 1

2

〈
ρ2〉 . (15)

Perhaps is also worthwhile to compute the variance of the first-order density
function, because it is related with the last result provided by equation (15) :

V ar (ρ) = 〈|ρ − 〈ρ〉|2〉 = 〈
ρ2〉− 〈ρ〉2 = 〈

ρ2〉− N2
M = 2NM − N2

M.

Owing to the variance expression, there can be finally written:

〈
ρ(2)

〉 = 1
2

〈
ρ2〉− V ar (ρ) . (16)

3.4. Diagonal terms of bond order matrix

Another intriguing question can be posed about which meaning can be
associated to the diagonal terms of the second-order population matrix:

NAA = 〈
�AA

[
ρ(2)

]〉 = 〈
ρ

(2)
AA

〉
= N2

A − 1
2

∑
α∈A

∑
β∈A

[PS]αβ [PS]βα,

which according to the Minkowski norm of the second-order density function
(16) can be also expressed as

〈
ρ

(2)
AA

〉
= 1

2

〈
ρ2

A

〉− V ar (ρA) ,

using the atomic projections of the first-order density function. That is the same
as to say that the second-order atomic populations can be related to the variance
of the first-order atomic density functions. In fact, these diagonal second-order
population terms at first glance seem to do not introduce more relevant infor-
mation than first-order Mulliken charges. However, somehow [8] such diagonal
contributions have been called valence indices.
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3.5. Mulliken bond orders as expectation values of the exchange part of the
second-order density function

When analyzing the exchange part of the bond order, as defined before in
equation (13):

NEx
AB = 1

2

∑
α∈A

∑
β∈B

[PS]αβ [PS]βα,

one can arrive to the same expression proposed by Mulliken for diatomic pop-
ulations, as already commented.

4. Conclusions

Using, previous to all other considerations, the result consisting into that
Mulliken atomic populations appear as expectation values of the first-order den-
sity function, then, the extension of the procedure to two electron density func-
tions can be shown to lead to find out that Mulliken bond orders are naturally
described as two electron expectation values of the second-order density function
exchange part.

A similarly based argument is also provided to show how the atomic charge
concept can also be defined as an expectation value of a Hermitian operator.

According to the present theoretical findings, atomic populations and bond
orders can be correctly defined within the quantum mechanical formalism as
expectation values of some Hermitian operator constructed as a projector. More-
over, using the described theoretical development, the chemical bond appears to
be a non-classical, exchange condensed density, conceptual consequence of the
quantum mechanical electronic nature of molecules.

Owing to the procedures outlined above, the term condensed density is
employed in the present work to also rename, in this way, Mulliken populations.
The reason is simple. The old original Mulliken definitions can be shown to be
easily extended up to any reduced density order, being first and second-order
condensed densities just coincident with Mulliken populations. In a forthcoming
paper it will be shown how to set up the straightforward procedure to extend
the present theory to easily computable third and higher-order condensed density
values, corresponding to bond orders involving an arbitrary number of atoms in
a given molecule.
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